
TP OPTIQUE MESURE DE L'INDICE D'UN PRISME

PRINCIPE

Formules du prisme :

- sin(i) = nsin(r)
- sin(i') = nsin(r')
- A = r + r'
- D = i + i' A

La déviation D est donc fonction de A, n et i.

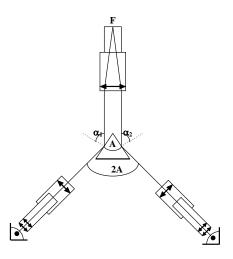
- ♣ On mesure dans un premier temps l'angle A du prisme.
- \perp D'autre part, au minimum de déviation, l'angle i vaut $\frac{D_m + A}{2}$.

L'orientation du prisme et de la lunette sont alors imposées simultanément.

Pour D = D_m l'angle de réfraction est r = $\frac{A}{2}$. L'indice est donc : $n = \frac{\sin((Dm + A)/2)}{\sin(A/2)}$

$$n = \frac{\sin((Dm + A)/2)}{\sin(A/2)}$$

MESURE DE L'ANGLE


Le plateau est orienté de façon à ce que le faisceau envoyé par le collimateur éclaire les deux faces du prisme.

Sur le schéma ci-contre, si l'angle d'incidence sur la première face est α_1 , alors l'angle d'incidence sur la seconde face est

 $\alpha_2 = \pi - A - \alpha_1$, donc l'angle entre les faisceaux réfléchis de part et d'autre vaut $2\pi - 2\alpha_1 - 2\alpha_2 = 2A$.

En visant successivement les deux images réfléchies de la fente source, on accède aux deux positions de la lunette séparées par l'angle 2A.

Mesurer A.

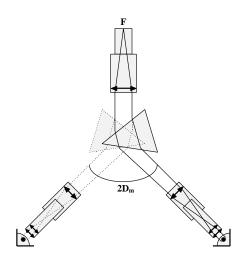
MESURE DE LA DEVIATION MINIMALE

En faisant varier l'angle d'incidence i entre i_0 et $\frac{\pi}{2}$, on constate que la déviation passe par un minimum (repérer d'abord ce minimum à l'œil nu avant de viser avec la lunette).

Effectuer le pointé d'une raie donnée pour les deux positions symétriques du prisme indiquée sur la figure, et mesurer ainsi D_m pour une radiation donnée (puisque n est fonction de la longueur d'onde, D_m l'est aussi).

COURBE DE DISPERSION

La détermination de A, puis celle de D_m pour des longueurs d'onde connues permet de tracer la courbe $n = f(\lambda)$.


On veut vérifier la validité de la loi de Cauchy : $n = A + \frac{B}{\lambda^2}$: déterminer 5 valeurs de n pour 5 valeurs de λ différentes, prises dans le tableau ci-dessous suivant la lampe utilisée ; tracer le graphe de $n=f(\frac{1}{\lambda^2}).$ Déterminer A et B.

Raies uu soululli		
ge	0,616µm	
ne	0,589µm	
,	0.560	

rouge	υ,616μm
jaune	0,589µm
verte	0,568µm
bleu vert	0,515µm
bleu vert	0,498µm
indigo	0,466µm

Raies du mercure

Raies du fficicule	
rouge	0,623µm
rouge	0,615µm
jaune	0,579µm
jaune	0,577µm
vert (brillant)	0,546µm
vert	0,492µm
bleu	0,436µm
violet	0,408µm
violet	0,405µm

