ψ^* 2016 : TD des 14 et 16 novembre (semaine 9)

Déterminants

1. Calculer le déterminant de la matrice de taille n suivante :

$$A = \begin{bmatrix} 2\cos\theta & 1 \\ 1 & \ddots & \ddots \\ & \ddots & \ddots & 1 \\ & & 1 & 2\cos\theta \end{bmatrix}$$

2. Déterminant circulant.

Soient $b_0,...,b_{n-1}$ des scalaires, et A la matrice carrée de taille n définie par : $\forall (i,j) \in \left[1..n\right]^2, \ a_{i,j} = b_r \ \text{où } r \text{ est le reste de la division de } j-i \ \text{par } n$

- a. Ecrire la matrice A.
- b. On fixe ω une racine $n^{\hat{e}}$ de 1, et on pose $X = [1, \omega, ..., \omega^{n-1}]^T$. Calculer AX et vérifier qu'il est proportionnel à X (X est ainsi un **vecteur propre** de A).

c. On pose
$$\omega_j = \exp\left(i\frac{j2\pi}{n}\right)$$
 et $B = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ \omega_0 & \omega_1 & \cdots & \omega_{n-1} \\ \vdots & \vdots & & \vdots \\ \omega_0^{n-1} & \omega_1^{n-1} & \cdots & \omega_{n-1}^{n-1} \end{bmatrix}$; calculer AB .

d. En déduire $\det A$.

3.
$$A = \begin{bmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & \vdots \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{bmatrix}$$

- a. Calculer $\det(\lambda I A)$, où λ est un scalaire. Indication : bien que ce ne soit pas naturel, le plus direct est de développer par rapport à la dernière colonne.
- b. Dans le cas où tous les a_i valent -1: calculer les **valeurs propres** de A, c'est à dire les scalaires λ pour lesquels $A \lambda I$ n'est pas inversible.

$$4. \ \ A = \left[\begin{array}{cccc} 0 & \cdots & 0 & a_1 \\ \vdots & \ddots & & \vdots \\ 0 & & 0 & a_{n-1} \\ a_1 & \cdots & a_{n-1} & a_n \end{array} \right] \ \ \text{avec} \ a_1, \dots, a_{n-1} \ \text{r\'eels non tous nuls, } n \geq 3 \ .$$

- a. Calculer A^2 , puis vérifier qu'aucun polynôme de degré 2 n'est annulateur de A .
- b. Trouver α, β tels que $A^2 \alpha A \beta I$ soit la plus creuse possible, puis calculer $A\left(A^2 \alpha A \beta I\right)$. Donner un polynôme annulateur de A de degré minimal.
- c. Calculer $\chi_A=\det(XI-A)$ (bien que X soit un polynôme, on le considèrera comme un réel pour faire le calcul).
- d. Vérifier que χ_A est un polynôme annulateur de A (théorème de Cayley-Hamilton).