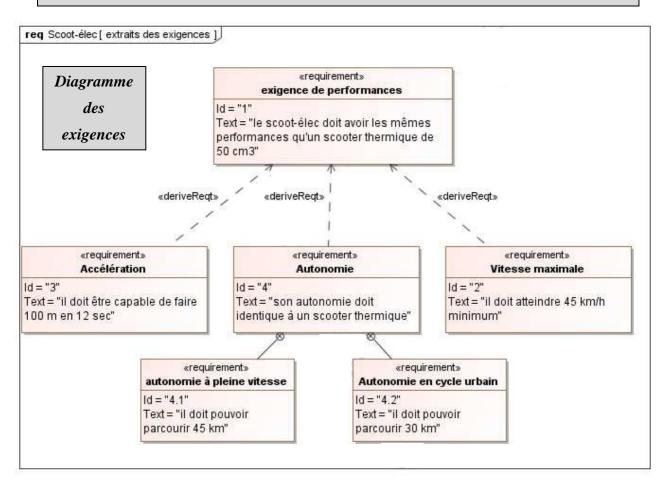
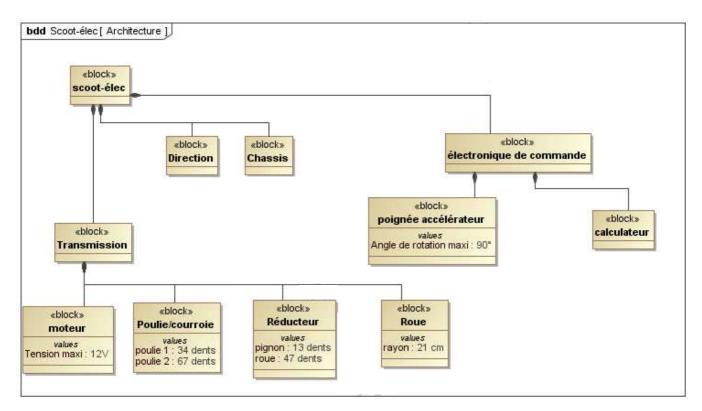
1.Présentation

Le scoot-élec de Peugeot a les mêmes performances qu'un scooter thermique de moins de 50cm³.

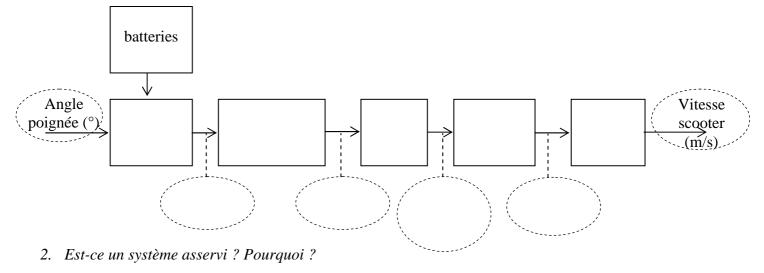

En usage urbain, il offre de nombreux avantages et peu d'inconvénients. Il s'intègre facilement dans le trafic. La puissance progressive de son moteur permet une conduite souple, fluide et sans à-coups. Son entretien est réduit et sa consommation très économique. L'engin, silencieux et propre, est nerveux, véloce, et maniable. Sa vitesse maximale est de 45km/h et il parcourt le 100m départ arrêté en 12 secondes. Son constructeur revendique une autonomie de 45km à pleine vitesse et de 30km en cycle urbain.

Le schéma de la figure ci-dessous montre les différents éléments du scooter.

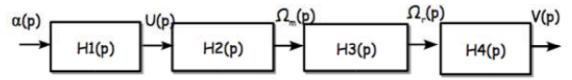
L'objectif de cet exercice est de valider certaines des performances annoncées par le constructeur



EXTRAIT DU CAHIER DES CHARGES


STRUCTURE DU SCOOTER ELECTRIQUE

On donne le diagramme de définition des blocs ci-dessous :


QUESTIONS ET TRAVAIL DEMANDE

1. Recopier et compléter le schéma-bloc fonctionnel du Scoot-élec (ci-dessous) à partir des éléments cidessus. Préciser la nature et les unités des grandeurs entre blocs.

2. Modélisation

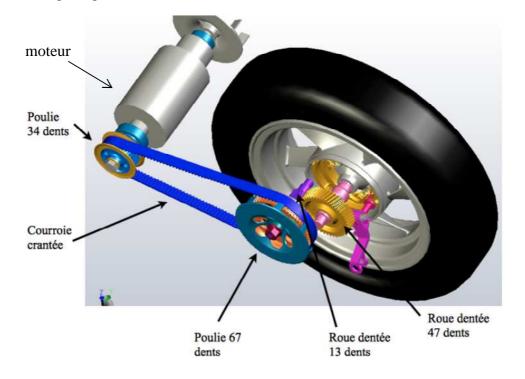
Le scooter est constitué des éléments indiqués dans le schéma-bloc fonctionnel ci-dessous. L'objectif de cette partie est de déterminer un modèle pour le scoot-élec, c'est-à-dire de trouver une fonction de transfert pour tous les constituants. On suppose dans toute la suite que tous les constituants sont des SLCI.

2.1. Electronique de commande et poignée d'accélérateur

L'électronique de commande associée à la poignée accélératrice délivre une tension maximale de 12V pour un angle de consigne de 90°.

3. La fonction de transfert $H_1(p)$ peut être modélisée par un gain pur, noté K_1 . Déterminer la valeur de K_1 en V/rad.

2.2.Roue arrière


Le rayon R_{roue} de la roue arrière est de 21cm.

4. Sachant que celle-ci ne dérape pas (donc roule sans glisser), en déduire le rapport $\frac{v(t)}{\omega_r(t)}$ donc la fonction de transfert $H_4(p)$. (v(t) est la vitesse du scooter (m/s) et $\omega_r(t)$ la vitesse de rotation de la roue (rad/s)).

2.3.Réducteur

Le réducteur est constitué :

- · de poulies crantées, possédant respectivement 67 dents et 34 dents
- · d'une courroie crantée, qui permet la transmission de puissance entre ces deux poulies
- · d'un système d'engrenages constitué de deux roues dentées de 13 et 47 dents.

5. Montrer que le rapport de réduction $\frac{\omega_r(t)}{\omega_m(t)}$ est égal en module à 0.14, avec $\omega_r(t)$ vitesse de rotation en rad/s de la roue et $\omega_m(t)$ vitesse de rotation de l'arbre moteur en rad/s. Donner alors la fonction de transfert $H_3(p)$.

2.4. Moteur à courant continu

Les quatre équations qui caractérisent un moteur à courant continu correspondent de manière générale à :

équation mécanique :
$$C_m(t)$$
- $C_r(t)$ = $J\frac{d\omega_m(t)}{dt}$

équation électrique :
$$u(t) = e(t) + Ri(t) + L \frac{di(t)}{dt}$$

équations de couplage :
$$C_m(t) = k.i(t)$$
 et $e(t) = k.\omega_m(t)$

avec u(t) tension d'alimentation, i(t) courant, Cm(t) couple fourni par le moteur, $\omega_m(t)$ vitesse de rotation du moteur, J, L, R, k constantes caractéristiques du moteur, Cr(t) couple résistant. On suppose que L et Cr(t) sont négligeables.

- 6. Déterminer la fonction de transfert $H_2(p) = \frac{\Omega_m(p)}{U(p)}$. Mettre cette expression sous la forme canonique d'un premier ordre et donner ses paramètres caractéristiques K et τ .
- 7. Donner la fonction de transfert du système complet $H(p) = \frac{V(p)}{\alpha(p)}$ en fonction de K et τ .

3. Validation de performances

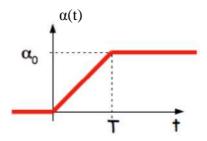
3.1. Détermination des caractéristiques du moteur

On cherche maintenant à déterminer les caractéristiques du moteur à courant continu pour obtenir les performances annoncées par le constructeur.

- 8. En utilisant le théorème de la valeur finale, déterminer en fonction de K l'expression de Vmax, la vitesse du scooter en régime permanent lorsqu'on soumet le système à un échelon de 90° (on accélère à fond).
- 9. Déterminer la valeur de K nécessaire pour respecter le cahier des charges.

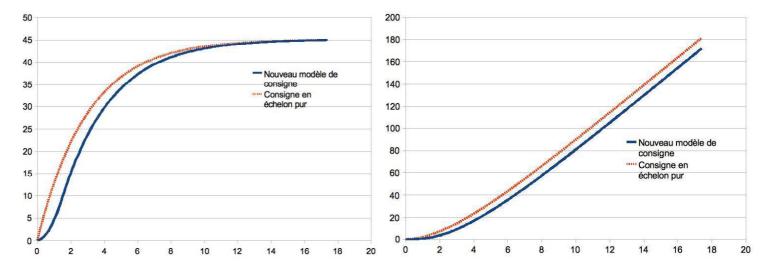
Deux moteurs possédant la valeur de K déterminée précédemment ($\approx 35.5 \text{ rad/Vs}$) sont disponibles. Le moteur M1 a une constante de temps $\tau_1 = 3s$, le moteur M2 a une constante de temps $\tau_2 = 5s$.

On note x(t) la position du scooter dans le repère fixe lié à la route. On suppose un déplacement rectiligne dans la direction de l'axe de la route (\vec{x}).


- 10. Donner la relation entre X(p) et V(p) et en déduire l'expression de X(p) pour un échelon $\alpha_0 = 90^{\circ}$ en fonction de τ .
- 11. Donner l'expression de x(t) en fonction de τ .

12. Choisir le moteur qui permette de respecter le cahier des charges.

3.2. Etude de la rapidité


13. Exprimer v(t) (réponse à un échelon de 90°) et tracer approximativement la courbe représentative. Quel est le temps mis par le scooter à atteindre 95% de Vmax ?

La consigne angulaire correspond, de manière plus réaliste, au signal représenté ci-dessous.

- 14. Donner l'expression temporelle de ce signal $\alpha(t)$ (On notera u(t) la fonction échelon unitaire) puis exprimer sa transformée de Laplace notée $\alpha(p)$.
- 15. Donner alors l'expression de V(p) en fonction de τ et T.
- 16. Décomposer en éléments simples la fraction rationnelle V(p) obtenue.
- 17. Donner l'expression de v(t) par transformée de Laplace inverse de V(p).

Les allures de v(t) et de x(t) correspondantes sont données ci-dessous.

- 18. Justifier l'allure de la courbe v(t) à partir de l'expression analytique obtenue.
- 19. Mesurer le temps de réponse à 5% et le comparer avec celui obtenu par l'approximation de commande en échelon pur. Conclure quant à la pertinence du modèle.