Année concours oblige TOUT est exigible depuis les classes maternelles jusqu'à cette date-ci

1 Les fonctions à deux variables réelles

Tout le programme précédent, dérivées partielles, recherche des extréma.

2 Les Suites

- 1. Définitons. Types de suites: Suites explicites $u_n=f(n)$, Suites récurrentes, Suites implicites.
- 2. Exemple de suites calculables :
 - (a) Suites arithmético-géométriques (associée à $f :\mapsto f(x) = ax + b$):

$$u_{n+1} = au_n + b \Rightarrow \begin{cases} u_n = n.b + u_0 \text{ si } a = 1\\ u_n = a^n(u_0 - \ell) + \ell \text{ avec } \ell = \frac{b}{1 - a} \end{cases}$$

(b) Suites homographiques $u_{n+1} = \frac{au_n + b}{cu_n + d}$ (aucune étude théorique, uniquement sur des exemples numériques):

Selon les points fixes (solutions de $\ell = \frac{a\ell + b}{c\ell + d}$)

Racines distinctes: Suite auxiliaire $x_n = \frac{u_n - \ell_1}{u_n - \ell_2}$ est géométrique.

Racine double: Suite auxiliaire $x_n = \frac{1}{u_n - \ell}$ est **arithmétique**.

- (c) Suites Récurrentes linéaires à coefficients constants. Utilisation de l'écriture matricielle $X_n = AX_{n-1}$.
 - Applications aux problèmes de dénombrement et aux probabilités.

Nature d'une suite

1. Convergence d'une suite: Définition **epsilonesque**. Suites divergentes. Suites divergentes vers $\pm \infty$.

$$u_n \longrightarrow \ell \iff (u_n - \ell) \longrightarrow 0 \iff |u_n - \ell| \longrightarrow 0$$

Unicité de la limite lorsqu'elle existe. Limites de référence.

- 2. Opérations et Algèbre des suites convergentes.
- 3. Limites de référence et comparaison: $q^n \xrightarrow[n \infty]{|q|<1} 0$, $n^{\alpha}q^n \xrightarrow[n \infty]{|q|<1} 0$, $q^n = o(n!)$, $n! = o(n^n)$... etc.
- 4. Si $u_n = f(n)$ (suite explicite) et $\lim_{x \to +\infty} f(x) = \ell$ alors la suite u_n converge vers ℓ . réciproque fausse.

5. Suites extraites: Définition.

Théorème: Si (u_n) converge vers ℓ alors toute suite extraite de (u_n) converge vers ℓ .

Théorème: Si (u_n) admet une suite extraite divergente ou deux suites extraites de limites différentes alors (u_n) est divergente.

Théorème(réciproque **timide**): $\begin{cases} u_{2n} \to \ell \\ u_{2n+1} \to \ell \end{cases} \Rightarrow u_n \to \ell.$

En général: si (v_n) et (w_n) sont extraites de (u_n) telles que les termes de (v_n) et (w_n) forment les termes de (u_n) et $\lim_{n \to \infty} w_n = \lim_{n \to \infty} v_n = \ell$ Alors $\lim_{n \to \infty} u_n = \ell$.

- 6. Convergence et Ordre dans \mathbb{R} :
 - (a) Si $u_n < a$ et (u_n) converge vers ℓ alors $\ell \leq a$
 - (b) Monotonie d'une suite(à partir d'un certain rang N).
 - (c) **Théorème de la Limite Monotone**: Une suite croissante converge ssi elle est majorée; sa limite vérifie $\forall n;\ u_n \leq \ell$ (ou exactement $\ell = \sup(u_n)$).

Une suite croissante non majorée diverge vers $+\infty$.

(Énoncés équivalents pour les suites décroissantes)

- (d) Soit des suites telles que $\forall n \geq N$, $w_n \leq u_n \leq v_n$, alors:
 - $(1) w_n \longrightarrow +\infty \Rightarrow u_n \longrightarrow +\infty$
 - $(2) v_n \longrightarrow -\infty \Rightarrow u_n \longrightarrow -\infty$
 - $(3) \qquad \begin{array}{c} w_n \longrightarrow \ell \\ v_n \longrightarrow \ell \end{array} \} \Rightarrow u_n \longrightarrow \ell \text{: Th\'eor\`eme de l'encadrement(des gendarmes)}$
- (e) Suites Adjacentes:

Théorème-Définition: Si (u_n) et (v_n) sont de monotonies opposées et $\lim_{n \to +\infty} u_n - v_n = 0$ alors les suites (u_n) et (v_n) convergent vers la même limite.

On a en plus : $\forall n \in \mathbb{N}$: $c_n < \ell < d_n$, où c_n désigne la suite croissante parmi (u_n) et (v_n) et (d_n) la décroissante.

Exercice Fondamental: Les étudiants doivent connaître le résultat $\sum\limits_{n=1}^n \frac{1}{k} \sum\limits_{n \infty} \ln(n)$

(voire $\sum\limits_{1}^{n} \frac{1}{k} = \ln(n) + \gamma + \mathrm{o}(1)$, où $\gamma \approx 0.57\cdots$ la constante d'Euler) et savoir le démontrer au besoin.

- 7. Utilisation des DL pour la recherche des limites de suites.
- 8. Exemple de suites implicites.
- 9. Étude des suites de la forme $u_{n+1} = f(u_n)$ où f est continue et $u_0 \in I$ (donné):
 - (a) (u_n) est bien définie ssi il existe $I \subset \mathbb{R}$ tel que $f(I) \subset I$ et $u_0 \in I$.
 - (b) Les limites événtuelles de (u_n) sont **incluses** dans l'ensemble des points fixes de f. L'ensemble des points fixes de f constituent les points stationnaires de la suite $u_n = f(u_{n-1})$.

(c) Monotonie de f et celle de (u_n) :

f **décroissante** Dans ce cas $f \circ f$ est croissante. On considère les suites extraites (u_{2n}) et (u_{2n+1}) sont monotones. On fait l'étude sur ces deux suites.

(d) Utilisation de l'inégalité des accroissements finis (IAF).

3 Séries après les vacances de toussaint

- 1. **Notation**: $\sum u_n$ série de terme général u_n , suite des somme partielles $S_n = \sum_{n \geq n_0}^n u_k$. **Réciproquement**: obtenir u_n à partir de la suite des sommes partielles : $u_n = S_n S_{n-1}$. **Convergence**: La série $\sum u_n$ converge **ssi** la suite des sommes partielles (S_n) convergence. Lorsque la série converge sa limite s'appelle la somme de la série, notée $\sum_{n=0}^{+\infty} u_n$ (**Critère du cancre**): Si $\lim_{n \to \infty} u_n \neq 0$ alors la série $\sum u_n$ est divergente.
- L'espace des séries convergentes est un sous espace vectoriel.
 Somme d'une série convergente et une série divergente est divergente.
- 3. Séries de référence
 - (a) Séries **géométriques** et associés :

Théorème: La série $\sum\limits_{n=0}q^n$ converge ssi |q|<1 et dans ce cas sa somme est $\frac{1}{1-q}$. **Généralisation : séries géométriques "dérivées" et "primitives"**: Soit $p\in\mathbb{N}$. Si |q|<1 alors les séries $\sum q^n$, $\sum n^p.q^n$ et $\sum \frac{1}{n^p}q^n$ convergent.

Expression de la somme : $\sum_{n=m}^{+\infty} q^n = q^m \frac{1}{1-q}$, expressions des sommes des séries dérivées.

- (b) Série **exponentielles**: $\forall x \in \mathbb{R}$; : $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$ en particulier $e^{-1} = \frac{1}{e} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!}$
- (c) Séries **téléscopiques**: Si $\forall n \geq n_0 : u_n = v_{n+1} v_n$ alors la série $\sum u_n$ converge ssi la suite (v_n) converge et dans ce cas $\sum_{n=n_0}^{+\infty} u_n = (\lim_{n \to +\infty} v_n) v_{n_0}$.
- (d) Série de **Riemann** : $\sum_{n\geq 1} \frac{1}{n^\alpha} : \begin{cases} \textbf{converge} \text{ si } \alpha > 1 \\ \textbf{diverge} \text{ vers } +\infty \text{ si } \alpha \leq 1 \end{cases}$
- 4. Séries à **termes de signe constant** (spécialement à termes positifs)

- (a) **Théorème**: Si $\forall n \geq n_0$, $u_n \geq 0$ alors la série $\sum u_n$ converge **ssi** la suite des sommes partielles est majorée
- (b) Théorèmes de **comparaison** et de **domination** (positive): Si $\forall n \geq n_0$, $u_n \leq v_n$ (resp. $u_n = \mathrm{o}(v_n)$) alors $\begin{cases} \sum u_n & \text{diverge} \Rightarrow \sum v_n \text{ diverge} \\ \sum v_n & \text{converge} \end{cases}$
- (c) Théorème des équivalents (positifs) Si $u_n \underset{n\infty}{\sim} v_n \Rightarrow \sum u_n$ et $\sum v_n$ sont de même nature.

(
Attention: en cas de convergence on peut avoir $\sum_{n\geq n_0}^{+\infty}u_n\neq\sum_{n\geq n_0}^{+\infty}v_n$)

- 5. Séries dont le terme général est de signe constant à partir d'un certain rang, se ramener au cas positif en étudiant la série de terme général $-u_n$.
- 6. **Convergence absolue** . Définition, Série semi convergente.

Théorème: toute série absolument convergente est convergente.

Le théorème précédent justifie l'intérêt porté au séries à termes positifs.

Exemple fondamental d'une série semi-convergente $\sum_{n\geq 1} \frac{(-1)^n}{n}$

4 Remarques et démonstration exigibles

- 1. Expression du terme général d'une suite arithmético-géométrique.
- 2. La limite d'une suite lorsqu'elle existe est unique.
- 3. (u_n) converge donc elle est bornée. Contre exemple indiquant que la réciproque est fausse
- 4. $\begin{pmatrix} u_n \longrightarrow 0 \\ (b_n) \text{ born\'ee} \end{pmatrix} \Rightarrow (u_n.b_n) \longrightarrow 0$
- 5. Définiton-Théorème des suites adjacentes.
- 6. Utilisation des $DL(\infty)$ pour l'étude des suites.
- 7. Si f est croissante alors la suite $u_{n+1}=f(u_n)$ est monotone, son sens de monotonie est déterminé par le signe de (u_1-u_0) et si f continue et $u_n\to\ell$ alors $\ell=f(\ell)$.

- 8. (critère du cancre) $\sum u_n$ converge $\Rightarrow u_n \xrightarrow[n \to +\infty]{} 0$. Contre exemple indiquant que la réciproque est fausse(i.e. $u_n \to 0$ mais $\sum u_n$ diverge).
- 9. Si |q| < 1 alors

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}; \qquad \sum_{n=m}^{+\infty} q^n = \frac{q^m}{1-q};$$

$$\sum_{n=0}^{+\infty} n \cdot q^{n-1} = \frac{1}{(1-q)^2}; \qquad \sum_{n=0}^{+\infty} n \cdot q^n = \frac{q}{(1-q)^2};$$

$$\sum_{n=0}^{+\infty} n(n-1)q^{n-2} = \frac{2}{(1-q)^3}; \qquad \sum_{n=0}^{+\infty} n^2 \cdot q^n = \frac{q(q+1)}{(1-q)^3}$$

- Fig. Il faut bien parler de **dérivation formelle** comme première justification puis au besoin dériver $\sum_{k=1}^{k=n-1} x^k = \frac{1-x^n}{1-x} = \frac{1}{1-x} \frac{x^n}{1-x}$ et faire un calcul de limite lorsque $n \to +\infty$ (sous la condition |x| < 1)
- 10. **Séries de Riemann**: $\sum \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.
- 11. Les étudiants doivent connaître, sur le bout des doigts les D.L. des fonction usuelles, et les utiliser pour la recherche d'équivalents ou de dominant de u_n terme général de la série sous étude.
- 12. Techniques de sommation par téléscopage et/ou changement d'indexation.
- 13. Toute série convergente absolument est convergente i.e. $\sum |u_n| \Rightarrow \sum u_n$ converge. Exemple d'une série semi convergente.

