
Exploitation expérimentale

En jaune,
$$1 + \frac{R_2}{R_1} = 101$$

En beige,
$$1 + \frac{R_2}{R_1} = 51$$

Qualitativement:

- Plus l'amplification est grande, plus la bande passante est faible.
- Plus l'amplification est grande, plus la rotation de phase se produit à fréquence basse.

Quantitativement:

- Avec les valeurs de G, on calcule 20*log(101) = 40 dB et 20*log(51) = 34 dB, ce que l'on vérifie sur les graphes pour les asymptotes horizontales.
- La droite rouge qui représente l'asymptote HF a une pente de 20 dB/dec.
- La rotation de phase se fait de 0 à $-\frac{\pi}{2}$. Pour un déphasage de $-\frac{\pi}{4}$, on trouve les deux fréquences de coupure, que l'on peut déterminer aussi pour GdB_{max} – 3dB ; on trouve approximativement 39 kHz pour G = 51 et 19 kHz pour G = 101.
- On peut vérifier le caractère constant de G*BP : 101*19 est pratiquement égal à 51*39...