ψ^* 2016 : TD des 13 et 15 mars (semaine 22)

Variables aléatoires

- 1. Un QCM comporte 20 questions, et pour chaque question r réponses possibles dont une seule est juste. Le barême est le suivant :
 - on attribue 1 point par réponse juste ;
 - pour les réponses fausses, le candidat a le droit de proposer une autre réponse et obtient alors 1/2 point par réponse juste.

Un candidat totalement ignare répond aléatoirement aux questions, mais il n'est pas assez bête pour refaire 2 fois la même erreur. On note X son score après la première tentative, Y le nombre de bonnes réponses au rattrapage, Z son score final.

- a. Déterminer la loi, l'espérance et la variance de X.
- b. Déterminer la loi de Y et son espérance pour $P(. \mid X = j)$.
- c. En déduire, sans chercher à calculer la loi de Y, l'espérance de Y.
- d. Quelle valeur faut-il donner à r pour que les candidats ignares aient en moyenne 5/20?
- e. Pour cette valeur de r, déterminer la loi de Y.
- 2. Une urne contient une proportion p de boules blanches, les autres étant noires. Ces boules sont indiscernables au toucher.

On effectue une succession de tirages avec remise, et on note S_k le nombre de tirages nécessaires pour obtenir la $k^{\grave{e}}$ boule blanche.

On pose $S_0 = 0$ et on définit $T_k = S_k - S_{k-1}$ pour tout $k \in \mathbb{N}^*$.

- a. Déterminer la loi de T_k , son espérance, sa variance.
- b. Justifier que les T_k sont indépendantes.
- c. Calculer l'espérance, la variance, la fonction génératrice de S_k .
- d. Déduire la loi de S_k de sa fonction génératrice.
- e. Retrouver cette loi par un raisonnement direct.
- 3. La fonction caractéristique d'une VAED X est $\Phi_X:t\mapsto E\left(e^{itX}\right)$.
 - a. Montrer que Φ_X est définie sur \mathbb{R} , continue, 2π -périodique.
 - b. Calculer $\,c_k=rac{1}{2\pi}\int_0^{2\pi}e^{-ikt}\Phi_X(t)dt$. En déduire que la loi de X est caractérisée par Φ_X .
 - c. Montrer que si X admet une espérance, alors Φ_X est C^1 ; et exprimer E(X) à l'aide de Φ_X .
 - d. Montrer que si X admet une variance, alors Φ_X est C^2 ; et exprimer V(X) à l'aide de Φ_X .
 - e. Calculer la fonction caractéristique d'une loi géométrique, puis d'une loi de Poisson.