I.B.2.a. Pour un écoulement de Poiseuille, en utilisant el A et la donnée de perte de charge linéique $a: \Delta \overline{H}_\ell = aL$ or nous avons montré dans cette partie toujours, que

$$a = \frac{32\eta U}{\rho g D^2}$$
 donc $\Delta \overline{H}_\ell = \frac{32\eta U L}{\rho g D^2}$.

En identifiant avec l'expression générale $\Delta \overline{H}_{\ell} = f \frac{L}{D} \frac{U^2}{2a}$ on obtient :

$$f = \frac{64\eta}{\rho UD} = \frac{64}{Re}.$$

I.B.2.b. Lecture sur le diagramme de Moody :

$$D=0.2~{\rm m}$$
 $L=8345~{\rm m}$ $Q=30.10^{-3}~{\rm m}^3{\rm s}^{-1}$ $v=\frac{\eta}{\rho}=10^{-6}m^2s^{-1}{\rm et}$ $Re=1.9~10^5$ On lit le facteur de friction f en cherchant l'ordonnée sur l'axe vertical de gauche du point de la courbe $\varepsilon/{\rm D}$ à l'abscisse Re (cf. poly de cours).

Fonte	Rugosité relative ε/D	Coefficient de friction	$\Delta \overline{H}_{\ell} = f \frac{L}{D} \frac{U^2}{2g}$
F1 Neuve	0,4/200 = 2 10 ⁻³	f ₁ = 2,45 10 ⁻²	47,5m
F2 Corrodée	1,2/200 = 6 10 ⁻³	$f_2 = 3,25 \ 10^{-2}$	63 m
F3 Déposée	1,6/200 = 8 10 ⁻³	f ₃ = 3,55 10 ⁻²	69 m

I.B.3. Pour un coude de rayon 1,5m tournant à 90°, K=0,2 soit une perte de charge singulière $\Delta \overline{H}_S = K \frac{U^2}{2g}$ =9,3 10⁻³m ; or la perte de charge linéique est :

 $\Delta \overline{H}_{\ell}/L$ =5,7 10⁻³ m pour la fonte neuve.

La perte singulière de ce coude est donc équivalente à 1,6 m de fonte neuve.

A titre de comparaison, un clapet anti-retour (K=70) correspond à une perte de charge de 3,25 m soit l'équivalent de 3,25 $\frac{8345}{47.5}$ = 570m.

C'est cohérent avec ce que donne l'énoncé en citant l'équivalent de plus de 500m.