ψ^* 2016 : TD du 6 septembre (semaine 1)

Séries numériques

1. Déterminer la nature des séries de terme général :

a.
$$u_n = (1 + \frac{1}{n})^n - e$$

b.
$$u_n = \frac{\ln n}{n^{\alpha}}$$

$$c. u_n = \frac{1}{n \left(\ln n\right)^{\alpha}}$$

- d. $u_n = F(n)z^n$, où F est une fraction rationnelle et z est un complexe non nul.
- 2. Soit $U: n \mapsto \sum_{k=1}^{n} \frac{1}{k}$ (et donc $U_0 = 0$ car somme vide).
 - a. On pose $\,v_n=U_n-\ln n\,$, $\,d_n=v_n-v_{n-1}\,$ pour $\,n\geq 2$, $\,d_1=v_1$. Trouver un équivalent simple de d_n .
 - b. Montrer que la suite v converge.
 - c. En déduire un équivalent de U_n .
- 3. Soit $F: x \mapsto \sum_{n=0}^{\infty} U_n x^n$ où U a été définie à l'exercice précédent, et x est réel. a. Déterminer son domaine de définition, ie l'ensemble des x pour lesquels la série converge.

 - b. On admet que $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x)$ pour $x \in]-1,1[$. Trouver une expression explicite de F.
- 4. Nature de $\sum \sin \left(\pi \sqrt{n^2 + 1}\right)$.