Chariot en translation

Un chariot (3) est animé d'un mouvement de translation de vitesse V par rapport à un bâti fixe (1). Il est guidé par des billes (2) de rayon R.

(on exprimera les résultats dans la base $\vec{i1}$, $\vec{j1}$, $\vec{k1}$).

on va s'intéresser au mouvement d'une bille (2)dans différents cas de figure.

Partie 1

Hypoyhèses:

- Aucun glissement n'est possible en A, B et C mais un glissement peut exister en K.
- La vitesse de translation de 3/1 est : $\overline{V(O_3,3/1)} = V \ \overline{k1}$ avec V <u>constant</u> et O3 un point du solide (3).
- le vecteur rotation de la bille par rapport au bâti sera noté : $\vec{\Omega}(2/1) = p\vec{i_1} + q\vec{j_1} + r\vec{k_1}$
- I.1 En exprimant le roulement sans glissement en A et B entre la bille 2 et le bâti 1, déterminer :
 - la composante suivant \vec{k}_1 de $\vec{\Omega}(2/1)$: r .
 - une relation entre p et q.

Exprimer alors $\vec{\Omega}(2/1)$ en fonction de p uniquement.

I.2 En exprimant le roulement sans glissement en C entre le chariot 3 et la bille 2, déterminer p en fonction de V et de R.

Exprimer alors $\vec{\Omega}(2/1)$ en fonction de V et R uniquement.

- **I.3** Déterminer enfin la vitesse du centre de la bille par rapport au bâti : $\overline{V(O_2,2/1)}$ en fonction de V uniquement.
- **I.4** Déterminer les composantes des vecteurs pivotement, roulement et glissement en K. Voir fiche ressource en fin d'exercice.

Partie 2

Le chariot est toujours animé de la même vitesse de translation V mais on suppose maintenant qu'il y a roulement sans glissement en A, B et K seulement.

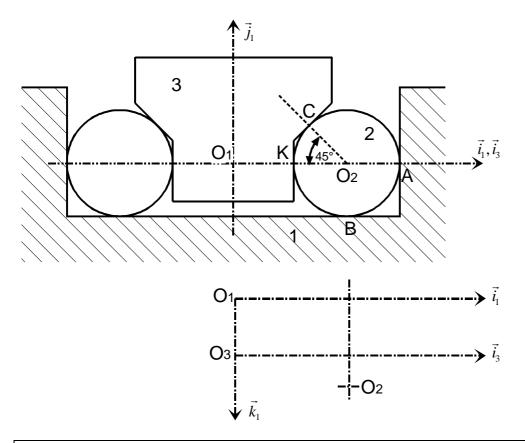
- **II.1** Déterminer les nouvelles composantes p,q et r du vecteur rotation de la bille par rapport au bâti
- **II.2** Déterminer la vitesse de glissement en C entre le chariot 3 et la bille 2.

On désire annuler cette vitesse de glissement en modifiant la forme du chariot (3). Le point K conservant la même position, on recherche alors une nouvelle position de contact pour C de sorte que $\overrightarrow{V(C,3/2)} = \vec{0}$. Pour cela, on posera $\overrightarrow{O_2C} = X \ \vec{i}_1 + Y \ \vec{j}_1$

II.3 Chercher l'équation du lieu des points C qui satisfont à la relation de roulement sans glissement précédente.

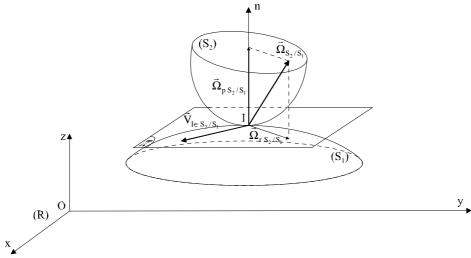
Existe t'il des points pouvant appartenir à la fois à ce lieu et à la surface de la bille ? Comment modifier la forme du chariot (3) pour que le glissement en C soit nul ? Faire un dessin.

1



Fiche ressource : Contact ponctuel entre deux solides :

Soient deux solides (S_1) et (S_2) en mouvement par rapport à (R).



On suppose que les solides admettent un plan tangent (π) au point de contact I, la normale n étant orientée de (S_1) vers (S_2) .

On considère le mouvement de (S₂) par rapport à (S₁) tel que $\begin{bmatrix} V_{S_2/S_1} \end{bmatrix} : \begin{cases} \vec{\Omega}_{S_2/S_1} \\ \vec{V}_{I \in S_2/S_1} \end{bmatrix},$

• On appelle ${f vecteur}$ de ${f pivotement}$ du solide (S_2) par rapport à (S_1) , le vecteur :

$$\vec{\Omega}_{p S_2/S_1} = (\vec{\Omega}_{S_2/S_1}.\vec{n}) \ \vec{n}$$

• On appelle **vecteur de roulement** du solide (S₂) par rapport à (S₁), le vecteur:

$$\vec{\Omega}_{r \, S_2/S_1} = \vec{\Omega}_{S_2/S_1} - \vec{\Omega}_{p \, S_2/S_1}$$

Ce vecteur appartient au plan (π) .