Moment d'un force localisée

- par rapport à un point

$$\vec{M}_A(\vec{F}) = \overrightarrow{AM}_A \vec{F}$$

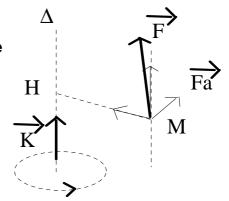
- par rapport à l'axe (A, k)

$$M_{\Delta}(\vec{F}) = M_{\Delta}(\vec{F}).\vec{k}$$

Calcul pratique

- Toute force qui passe par l'axe ou est parallèle à l'axe a un moment nul.

$$\boxed{M_{\Delta} = +ou - HMF_a}$$


 $M_{\Delta} = + \mathsf{ou} - HM F_a \big|_{Fa \text{ norme de la composante active.}}$

Forces à action réparties

- Résultante de l'action

$$\vec{F} = \iiint d\vec{F}(M)$$

$$\vec{M}_A = \iiint \vec{AM} \wedge \vec{dF}(M)$$

Notion de couple

Une action est un couple si sa résultante est nulle. Il est caractérisé par son moment, qui est le même en tout point.

Exemple : couple de rappel élastique (de torsion) $M_{\Lambda} = -C\alpha$

Principe des interactions

Si (A) agit sur (B) par \vec{F} et \vec{M}_{\circ} , les actions de (B) sur (A) sont décrites par - \vec{F} et - \vec{M}_{\circ}

Contact entre deux solides : forces de liaison

Vitesse de glissement de S par rapport à $\Sigma |\vec{V}_g = \vec{V}(I_S) - \vec{V}(I_{\Sigma})|$

Contact sans glissement : $\vec{V}_g = \vec{V}(I_S) - \vec{V}(I_\Sigma) = \vec{O}$.

Rem: ne pas confondre avec un contact sans frottement.

Rem : en général, il faut du frottement pour éviter le glissement.

Lois de Coulomb du frottement de glissement

Réaction du support $\vec{R} = \vec{N} + \vec{T}$ La composante tangentielle \vec{T} est la force de frottement.

Lois de Coulomb

- s'il n'y a pas glissement ($\vec{V}_g = \vec{O}$), on a une <u>inégalité</u> portant sur les **normes** T<f N

- si le glissement a lieu ($\vec{V}_g \neq \vec{O}$), T = f'N et $\vec{T} = -T \frac{V_g}{V_g}$ qui montre que T s'opposera au

glissement. f et f' sont les coefficients de frottement statique et dynamique souvent considérés comme égaux.